3.411 \(\int \frac{x^6}{\sqrt{a+b x^3}} \, dx\)

Optimal. Leaf size=254 \[ \frac{32 \sqrt{2+\sqrt{3}} a^2 \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{b} x+\left (1-\sqrt{3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt{3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt{3}\right )}{55 \sqrt [4]{3} b^{7/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}-\frac{16 a x \sqrt{a+b x^3}}{55 b^2}+\frac{2 x^4 \sqrt{a+b x^3}}{11 b} \]

[Out]

(-16*a*x*Sqrt[a + b*x^3])/(55*b^2) + (2*x^4*Sqrt[a + b*x^3])/(11*b) + (32*Sqrt[2
 + Sqrt[3]]*a^2*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3
)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^
(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(55*3^
(1/4)*b^(7/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1
/3)*x)^2]*Sqrt[a + b*x^3])

_______________________________________________________________________________________

Rubi [A]  time = 0.197009, antiderivative size = 254, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133 \[ \frac{32 \sqrt{2+\sqrt{3}} a^2 \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{b} x+\left (1-\sqrt{3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt{3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt{3}\right )}{55 \sqrt [4]{3} b^{7/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}-\frac{16 a x \sqrt{a+b x^3}}{55 b^2}+\frac{2 x^4 \sqrt{a+b x^3}}{11 b} \]

Antiderivative was successfully verified.

[In]  Int[x^6/Sqrt[a + b*x^3],x]

[Out]

(-16*a*x*Sqrt[a + b*x^3])/(55*b^2) + (2*x^4*Sqrt[a + b*x^3])/(11*b) + (32*Sqrt[2
 + Sqrt[3]]*a^2*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3
)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^
(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(55*3^
(1/4)*b^(7/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1
/3)*x)^2]*Sqrt[a + b*x^3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 16.547, size = 226, normalized size = 0.89 \[ \frac{32 \cdot 3^{\frac{3}{4}} a^{2} \sqrt{\frac{a^{\frac{2}{3}} - \sqrt [3]{a} \sqrt [3]{b} x + b^{\frac{2}{3}} x^{2}}{\left (\sqrt [3]{a} \left (1 + \sqrt{3}\right ) + \sqrt [3]{b} x\right )^{2}}} \sqrt{\sqrt{3} + 2} \left (\sqrt [3]{a} + \sqrt [3]{b} x\right ) F\left (\operatorname{asin}{\left (\frac{- \sqrt [3]{a} \left (-1 + \sqrt{3}\right ) + \sqrt [3]{b} x}{\sqrt [3]{a} \left (1 + \sqrt{3}\right ) + \sqrt [3]{b} x} \right )}\middle | -7 - 4 \sqrt{3}\right )}{165 b^{\frac{7}{3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a} + \sqrt [3]{b} x\right )}{\left (\sqrt [3]{a} \left (1 + \sqrt{3}\right ) + \sqrt [3]{b} x\right )^{2}}} \sqrt{a + b x^{3}}} - \frac{16 a x \sqrt{a + b x^{3}}}{55 b^{2}} + \frac{2 x^{4} \sqrt{a + b x^{3}}}{11 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**6/(b*x**3+a)**(1/2),x)

[Out]

32*3**(3/4)*a**2*sqrt((a**(2/3) - a**(1/3)*b**(1/3)*x + b**(2/3)*x**2)/(a**(1/3)
*(1 + sqrt(3)) + b**(1/3)*x)**2)*sqrt(sqrt(3) + 2)*(a**(1/3) + b**(1/3)*x)*ellip
tic_f(asin((-a**(1/3)*(-1 + sqrt(3)) + b**(1/3)*x)/(a**(1/3)*(1 + sqrt(3)) + b**
(1/3)*x)), -7 - 4*sqrt(3))/(165*b**(7/3)*sqrt(a**(1/3)*(a**(1/3) + b**(1/3)*x)/(
a**(1/3)*(1 + sqrt(3)) + b**(1/3)*x)**2)*sqrt(a + b*x**3)) - 16*a*x*sqrt(a + b*x
**3)/(55*b**2) + 2*x**4*sqrt(a + b*x**3)/(11*b)

_______________________________________________________________________________________

Mathematica [C]  time = 0.496031, size = 174, normalized size = 0.69 \[ \sqrt{a+b x^3} \left (\frac{2 x^4}{11 b}-\frac{16 a x}{55 b^2}\right )+\frac{32 i a^{7/3} \sqrt{(-1)^{5/6} \left (\frac{\sqrt [3]{-b} x}{\sqrt [3]{a}}-1\right )} \sqrt{\frac{(-b)^{2/3} x^2}{a^{2/3}}+\frac{\sqrt [3]{-b} x}{\sqrt [3]{a}}+1} F\left (\sin ^{-1}\left (\frac{\sqrt{-\frac{i \sqrt [3]{-b} x}{\sqrt [3]{a}}-(-1)^{5/6}}}{\sqrt [4]{3}}\right )|\sqrt [3]{-1}\right )}{55 \sqrt [4]{3} \sqrt [3]{-b} b^2 \sqrt{a+b x^3}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[x^6/Sqrt[a + b*x^3],x]

[Out]

Sqrt[a + b*x^3]*((-16*a*x)/(55*b^2) + (2*x^4)/(11*b)) + (((32*I)/55)*a^(7/3)*Sqr
t[(-1)^(5/6)*(-1 + ((-b)^(1/3)*x)/a^(1/3))]*Sqrt[1 + ((-b)^(1/3)*x)/a^(1/3) + ((
-b)^(2/3)*x^2)/a^(2/3)]*EllipticF[ArcSin[Sqrt[-(-1)^(5/6) - (I*(-b)^(1/3)*x)/a^(
1/3)]/3^(1/4)], (-1)^(1/3)])/(3^(1/4)*(-b)^(1/3)*b^2*Sqrt[a + b*x^3])

_______________________________________________________________________________________

Maple [A]  time = 0.025, size = 320, normalized size = 1.3 \[{\frac{2\,{x}^{4}}{11\,b}\sqrt{b{x}^{3}+a}}-{\frac{16\,ax}{55\,{b}^{2}}\sqrt{b{x}^{3}+a}}-{\frac{{\frac{32\,i}{165}}{a}^{2}\sqrt{3}}{{b}^{3}}\sqrt [3]{-a{b}^{2}}\sqrt{{i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-a{b}^{2}}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}}} \right ){\frac{1}{\sqrt [3]{-a{b}^{2}}}}}}\sqrt{{1 \left ( x-{\frac{1}{b}\sqrt [3]{-a{b}^{2}}} \right ) \left ( -{\frac{3}{2\,b}\sqrt [3]{-a{b}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}}} \right ) ^{-1}}}\sqrt{{-i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-a{b}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}}} \right ){\frac{1}{\sqrt [3]{-a{b}^{2}}}}}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-a{b}^{2}}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}}} \right ){\frac{1}{\sqrt [3]{-a{b}^{2}}}}}}},\sqrt{{\frac{i\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}} \left ( -{\frac{3}{2\,b}\sqrt [3]{-a{b}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-a{b}^{2}}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{b{x}^{3}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^6/(b*x^3+a)^(1/2),x)

[Out]

2/11*x^4*(b*x^3+a)^(1/2)/b-16/55*a*x*(b*x^3+a)^(1/2)/b^2-32/165*I*a^2/b^3*3^(1/2
)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1
/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I
*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-
a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1
/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2
)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/
b*(-a*b^2)^(1/3)))^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{\sqrt{b x^{3} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(b*x^3 + a),x, algorithm="maxima")

[Out]

integrate(x^6/sqrt(b*x^3 + a), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{6}}{\sqrt{b x^{3} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(b*x^3 + a),x, algorithm="fricas")

[Out]

integral(x^6/sqrt(b*x^3 + a), x)

_______________________________________________________________________________________

Sympy [A]  time = 2.70022, size = 37, normalized size = 0.15 \[ \frac{x^{7} \Gamma \left (\frac{7}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{7}{3} \\ \frac{10}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt{a} \Gamma \left (\frac{10}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**6/(b*x**3+a)**(1/2),x)

[Out]

x**7*gamma(7/3)*hyper((1/2, 7/3), (10/3,), b*x**3*exp_polar(I*pi)/a)/(3*sqrt(a)*
gamma(10/3))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{\sqrt{b x^{3} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/sqrt(b*x^3 + a),x, algorithm="giac")

[Out]

integrate(x^6/sqrt(b*x^3 + a), x)